Assigning DOI to grants Keeping track of research outputs ### Salvatore La Rosa, PhD Chief Scientific Officer Children's Tumor Foundation # Why assigning DOI to grants? #### **Publications: Researchers = Grants: Funders** To advance their career researchers: - Make publications - Track citations (success metrics) - Use their publications to find new collaborations - Look at other publications to advance their own research To advance their mission funders: - Make grants - Track publications out from grants - Use their grants/grantees to expand the community network - Look at what other funders funds to avoid duplication and fund unique research Grant DOIs allow for a more accurate tracking of research outputs # Grants DOI in CTF ecosystem #### In 2018 we launched the NF-OSI (NF Open Science Initiative) - DOI for grants - DOI for Data digital project page on NF Data Portal - DOI for publications - ORCID ID for researchers ### Benefits - Avoid lengthy searches to find publications out of grants Reach out to researchers, scavenge for acknowledgments - Better understanding of research impact - Better analytics for reporting - Disambiguation of funding merits achievements - Ability to connect multiple types of output together - Provide a richer experience to all stakeholders Researchers, donors, patients, caregivers, other funders, etc. ## Benefits | | A | Award Details | | |--|--|---|--| | Grant ID | CTF-2019-04-004 https://doi.org/10.48105/pc.gr.88786 | Project Title | A mutation-independent genome editing approach for the treatment of neurofibromatosis type 1 (NF1) using novel AAV vectors | | Award Amount | \$240,000.00 | Primary Organization | Children's Medical Research Institute, Sydney, Australia | | Award Start Date | 05/01/2019 | Award End Date | 10/31/2021 | | PI and PI Equivalents | Samantha Ginn (PI) (5) https://orcid.org/0000-0002-0876-6292 | Key Personnel | | | estimated total of 100,000 indivi
is benign neurofibromas (nerve
peripheral and central nerve tiss
develop such genetic therapies f
Specifically, we will use a viral ve
reagents will be generated, we v | sheath tumor), however, in approximate 20% of cases NF1 can also result in serious complic
ue in particular). Currently, there is no cure for NF1, therefore, the development of gene the
or these patients. We have assembled a world-class team with demonstrated expertise to d
ctor based on recombinant adenoassociated virus (rAAV), already showing promising result | er characterized by a wide variety of clinical manife
ations which affect multiple body systems. These ir
erapy approaches with the potential for clinical trar
levelop and evaluate cutting-edge genome editing it
is in the clinic for other genetic diseases, to deliver
timate target of the therapy we are developing. We | stations and is associated with an increased risk of tumors. The hallmark feature of this disease
sclude physical deformities, progressive scoliosis, learning disabilities and cancer (tumors of the
slation are desperately needed. Recent technological advances are now making it possible to
rechnology and efficient gene delivery systems to repair the NF1 gene in affected cells.
the therapeutic editing reagents to the target cells. To ensure that the most clinically-relevant
are also designing a strategy that will replace a region of the NF1 gene rather than targeting a | Ability to include more information (links to data DOI, publication DOI, etc.) ## Benefits